

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Thursday 14th April 2011 - Conference **Potential for development of animal husbandry** and aquaculture in CEMAC zone

Possible interventions for the improvement of animal husbandry in CEMAC

LINKING INSTITUTIONS

Edi Piasentier

University of Udine

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Expected evolution of livestock production

- New livestock functions are emerging, including landscape and vegetation management using grazing animals.
- Consumer choices are increasingly influenced by environmental and welfare concerns, and by tastes for speciality products.
- Environmental challenges that need to be addressed include:
 - emission of greenhouse gases from livestock (ruminants) and their excretions;
 - deforestation for the establishment of pastures and feed production (particularly soybean);
 - pollution of land and water by livestock wastes.

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

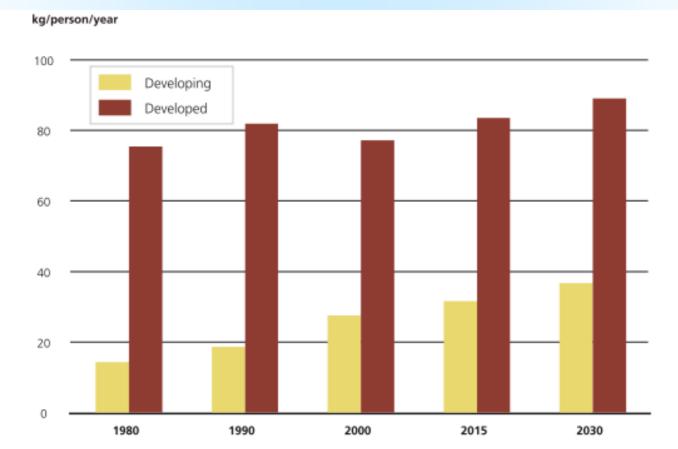
THE LIVESTOCK REVOLUTION

A significant rise in demand for livestock products in the next future (Delgado et al., 1999)

 \succ as a result of :

> a rise in human population numbers,

- > urbanization and economic development,
- > especially in developing countries



Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Changes in the meat consumption

Sources: 1980, 1990 and 2000 figures from FAOSTAT; 2015 and 2030 figures from FAO (2002a).

L'Ve

FAO. 2007. The State of the World's Animal Genetic Resources for Food and Agriculture, edited by Barbara Rischkowsky & Dafydd Pilling. Rome

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Projected trends in meat consumption from 2000 to 2050

Region	Production			Consumption per capita		
	1999-2001	Growth rate 1999-2001 to 2030	Growth rate 2030 to 2050	1999-2001	Growth rate 1999-2001 to 2030	Growth rate 2030 to 2050
	[1 000 tonnes p.a.]	[% p.a.]	[% p.a.]	[kg p.a.]	[% p.a.]	[% p.a.]
Sub-Saharan Africa	5 564	3.3	2.8	9.5	1.2	1.4
Near East/North Africa	7 382	3.3	2.1	21.9	1.6	1.1
Latin America & the Caribbean	31 608	2.2	1.1	59.5	0.9	0.7
South Asia	7 662	3.9	2.5	5.5	2.7	1.9
East Asia	73 251	2.1	0.9	39.8	1.5	0.9
Developing world	125 466	2.4	1.3	26.7	1.2	0.7
World	229 713	1.7	1.0	37.6	0.7	0.5

Source: FAO (2006a).

LINKING INSTITUTIONS

FAO. 2007. The State of the World's Animal Genetic Resources for Food and Agriculture, edited by Barbara Rischkowsky & Dafydd Pilling. Rome

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Livestock responses

> To meet this demand they have to increase:

> the number of meat animals globally

> animal production levels

≻by

Choosing the suitable livestock resources and
improving their genetic value

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

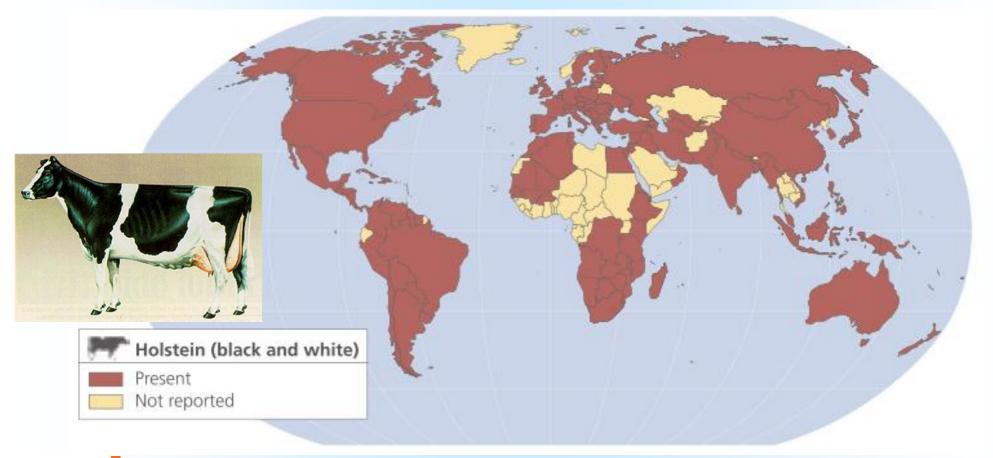
Available livestock resources

- Thousands of years of animal husbandry and controlled breeding, combined with the effects of natural selection, have given rise to great genetic diversity among the world's livestock populations.
- Today they co-exist :
 - high-output animals intensively bred to supply uniform products under controlled management conditions – with the
 - multipurpose breeds kept by small-scale farmers and herders mainly in low external input production systems.

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Recent trends and current cattle distribution

- The countries and regions of the world have long been interdependent in their utilization of genetic resources
- the scale of transfers and the rate at which the genetic composition of livestock populations is transformed have increased dramatically in recent decades
- these transfers have the potential to narrow the genetic resource base of the world's animal production.



Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Distribution of Holstein-Friesian cattle

FAO, 2007. ibidem

LINKING INSTITUTIONS

Today, the world's most widespread cattle breed, the Holstein-Friesian, is found in at least 128 countries

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

New approaches in breeding (animal genetic resource management) programmes

- At both national and international levels, actions should be taken
 - To promote sustainable utilization, and, where necessary,
 - for conservation of threatened resources.
- Structured breeding (animal genetic resource management) programmes provide a key means to increase production levels and product quality, increase productivity and cost efficiency, maintain genetic diversity and support the conservation and sustainable utilization of specific breeds.

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

IN CEMAC

L'Ve

LINKING INSTITUTIONS

In tropical and sub-tropical regions Zebù cattle (*Bos indicus*) is main type of cattle both in economic and cultural terms

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Zebu breeds

Goudali

Red Fulani

White Fulani

LINKING INSTITUTIONS for VETERINARY EDUCATION

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Cattle origin and migration routes in Africa

D: Centre(s) of domestication

Migration routes:

European *B. taurus* (longhorn/shorthorn) (yellow) 6000 - 2500 BC

African *B. taurus* (blue) 5000 BC - 500 AD

Zebu, *B. indicus* - 1st wave (orange) >2000 BC

Zebu, *B. indicus* - 2nd wave(red) >700 AD

Source: Graphics unit, ILRI (2006)

D

LINKING INSTITUTIONS

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

N'Dama

Long horned African taurine breed

The origin of this breed is located in the highlands of Guinea. **It has spread** in the Sudanian and Guinean regions.

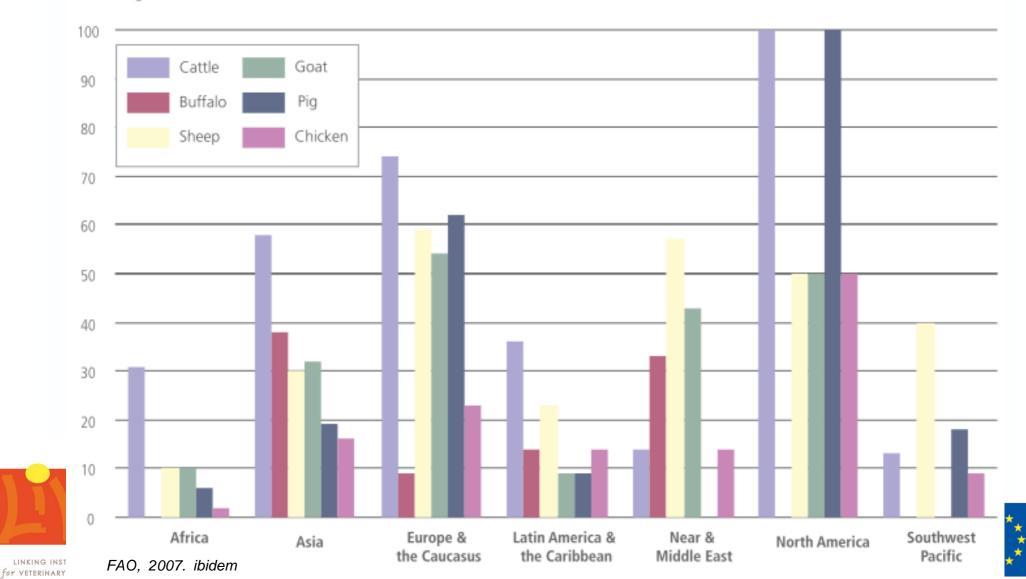
- N'Dama is a medium size type breed (100 cm at shoulder height for cows; 120 cm for bulls) with a large and strong head and with lyre-shaped horns.
- Birth weight : 14-20 kg. Weight at 4-5 years old: 250 kg (cows) and 350 kg (bull).
- Production performances. Cows produce only 2-3 liters milk per day during 7-8 months. This breed is used for meat and the ratio carcass/liveweight is around 50%.

LINKING INSTITUTIONS

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

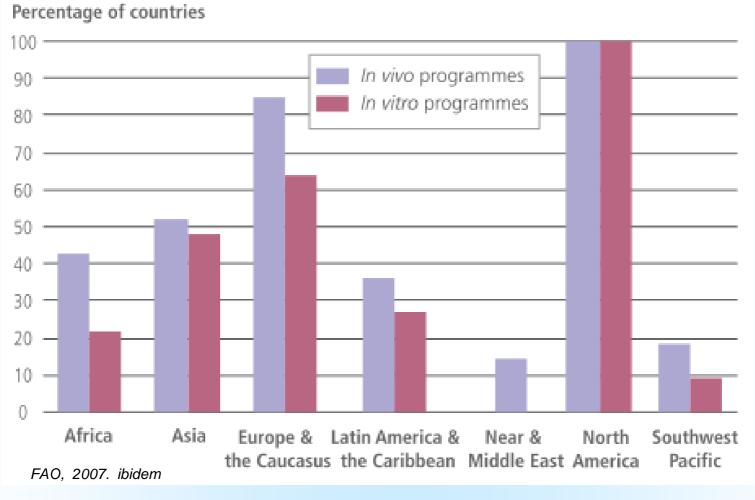
Breed risk status in Africa

- In Africa, 59% percent and 60% percent of mammalian and avian breeds, respectively, are classified as being of unknown risk status.
- Cattle have 16% the proportions of at-risk breeds.
- Cattle are the species with the highest number of breeds reported as extinct (209).



Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Structured breeding activities Regional distribution for the main livestock species


Percentage of countries

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Regional distribution of conservation programmes

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

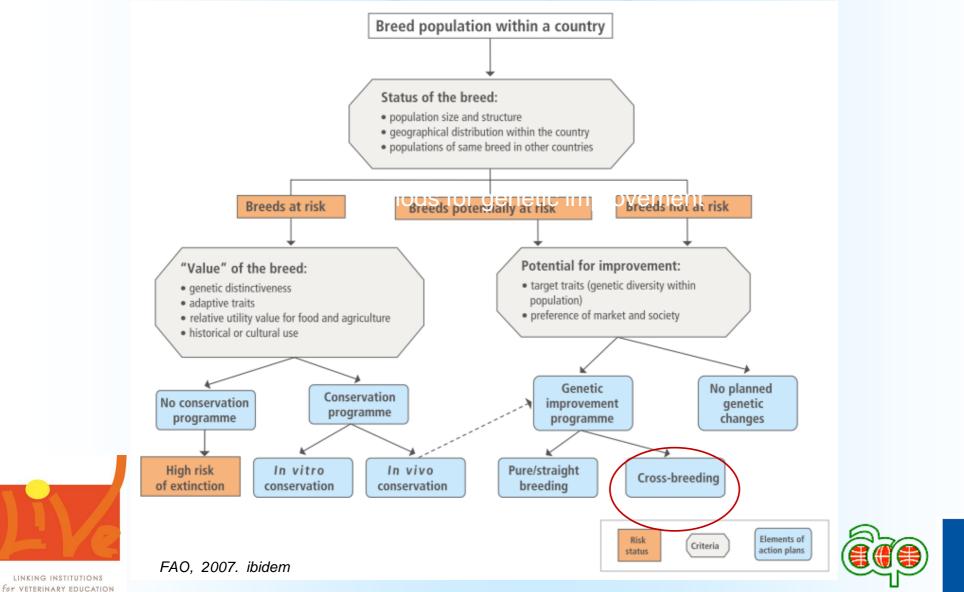
Animal identification systems and rules

- Systems for animal identification, registration and performance
- recording are important for:
 - structured genetic improvement programmes
 - disease control,
 - traceability, and
 - administration of conservation programmes
- In many developing countries there is the need for improved tools and regulation in this field.

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Reproductive biotechnologies

- Artificial insemination and embryo transfer
 - > speed up genetic progress,
 - reduce the risk of disease transmission and
 - expand the number of animals that can be bred from a superior parent.
- The availability of these technologies varies greatly from country to country and between regions.
- Capacity is generally much weaker in developing countries
- Expand the use of these technologies because of their potential contribution to meeting demands for increased output of animal products.
- Affordability and access have to be addressed to poorer livestock keepers



Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Animal genetic resources management programme

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Cross-breeding

Objectives

Crossbreeding beef cattle offers two primary advantages relative to the use of only one breed:

1) cross-bred animals exhibit heterosis (hybrid vigor), and

2)crossbred animals **combine the strengths** of the various breeds used to form the cross.

The goal of a well-designed, systematic crossbreeding program is to simultaneously optimize these advantages of heterosis and breed complementarity.

Stable cross-breeding programmes should involve the maintenance of purebred herds of local breeds

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Potential advantages of heterosis

Individual Heterosis: Advantage of the Crossbred Calf¹

Trait	Observed Improvement	% Heterosis
Calving rate, %	3.2	4.4
Survival to weaning, %	1.4	1.9
Birth weight, lb.	1.7	2.4
Weaning weight, lb.	16.3	3.9
ADG, lb./d	.08	2.6
Yearling weight, lb.	29.1	3.8

¹Adapted from Cundiff and Gregory, 1999.

Maternal Heterosis: Advantage of the Crossbred Cow1

Trait	Observed Improvement	% Heterosis
Calving rate, %	3.5	3.7
Survival to weaning, %	.8	1.5
Birth weight, lb.	1.6	1.8
Weaning weight, lb.	18.0	3.9
Longevity, yr.	1.36	16.2
Cow Lifetime Production	:	
No. Calves	.97	17.0
Cumulative Wean. Wt., lb.	600	25.3

1Adapted from Cundiff and Gregory, 1999.

Scott P. Greiner, 2008. Crossbreeding beef cattle. Virginia Cooperative Extension. Publication 400-805

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Combining breeds traits

- Allows to capture the strengths of two or more breeds and match breeds in a complementary fashion:
 - the heat tolerance and hardiness of the indigenous breed complement
 - the fertility, milking ability and rapid growth of the exotic one

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Indiscriminate cross-breeding

- Indiscriminate cross-breeding refers to a spectrum of actions ranging from upgrading or cross-breeding to complete replacement of a local breed with imported animal genetic resources in an unplanned manner and without adequate assessment of the performance of the respective breeds under relevant production conditions.
- a problem that is considered by many experts to be a major threat to genetic diversity.

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Preliminary Results of a Crossbreeding Program of Autochthonous Goudali (Zebu) Cattle of Cameroon with Italian Simmental Bessong et al., 2011. Simmental European Congress

Logone Birni poultry-branding area being research cards eep and posts for domestic us Horses and donkeys FISHING and lake Eahing Traditional sea fuhing Small-scale fishing centre Industrial fishing port Barnend ATLANTIC Irand Batang OCEAN

en livestock farms and ses (cattle and pips)

Italian Simmental

Dual purpose breed main characteristics:

- early sexual maturity,
- fertility,
- lactating ability,
- rapid growth
- good beef characteristics
- very docile disposition

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

General aims of the project

- The project plans to elaborate a cooperation activity between SODEPA c/o Ministry of Livestock, Fisheries and Animal Industries of the Government of the Republic of Cameroon and Italian partnership to improve on the meat and milk productivity from the Gudali zebu breed in Cameroon.
- Specifically, it is a project-type technical cooperation from Italian Simmental Breeders' Association (Associazione Nazionale Allevatori di Pezzata Rossa Italiana – ANAPRI) and the Udine University.
- It aims for a well-planned introduction and improvement of high quality dualpurpose cattle taking advantage from crossing the Italian Simmental and local Gudali zebu breed, and the increase of productivity by vulgarising:
 - the artificial insemination technique
 - cattle selection practices
 - Feeding techniques that ensures high quality feed at all seasons.

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Justification

- -Problem of inadequate food security
- -Education / Scientific purposes
- -Cooperation and capacity enhancement
- -Promoting and improve good management of the local breeds in the country for excellent exploitation
- -Be able to maintain the WHO/ FAO recommendation 18kg/inhabitant/year for meat consumption

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Specific Objectives

- To enhance learning within SODEPA to increase its competence to support smallholder cattle farmers and local people.
- To establish and maintain a nucleus herd of dual purpose crossbreed cattle comprising SIMGOUD crosses by
 - a planned and controlled introduction of Italian Simmental semen in selected local GOUDALI cattle
 - alternative crossbreeding systems
- To allow the exploitation of heterosis and complementary traits from cross breeding between the Zebu and the Italian Simmental, to obtain more productive cattle adapted to the different production systems in Cameroon.

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Goudali cattle at Ndokayo Ranch

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Individual animal identification system

LINKING INSTITUTIONS for veterinary education

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Cows ear-tagged and provided of ruminal transponders

Training SODEPAPlenary meeting Universidad Naciona
10th-16thAvril 20technicians on assessing
cows reproductive status and Al
at Ndokayo Ranch in May 200810th-16thAvril 20

Nine technical staff of SODEPA actively participated in the artificial insemination activity.

They acquired skills on management of cryogenic containers, semen preservation and transportation, thawing of straws for insemination, restraint of animals in breeding boxes and provision of assistance to inseminators.

Plenary meeting

Feeding improvement

Re- seeding of Guatemala grass on natural pasture and improved grass pasture at the Dumbo-Jakiri Ranch

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Feeding improvement

Vitamin and mineral supplement distribution at Dumbo ranch

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Goudali cattle at Dumbo Ranch

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

An experimental (without hump) and a control (humped) calf, both in their first month of life

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Health Management

Action	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Premunition against Trypanosomosis				X							X	
Anthelmintic				Х	X	Х	X	Х	X	Х	Х	Х
Micro-Mineral	Х	Х	X	X	X	X	X	X	X	Х	Х	X
Contagious Bovine Pleuropneumonia										Х		
Acaricide	Х	Х	X	X	X	Х	Х	X	Х	X	X	X
Nodular Dermatitis			Х									
Black quarter										X		
Pasteurellosis										Х		

Plenary meeting Universdad Nacional de Guinea Ecuatorial

LINKING INSTITUTIONS for VETERINARY EDUCATION

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Reproductive performance

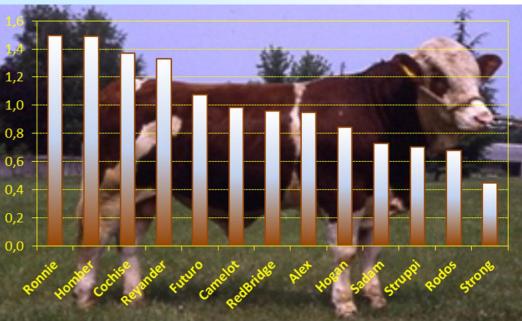
Dumbo Herd Situation as at September 2010

Herd	No	SIMGO	UD Calves	No Cows	No Cows w	
Number	Cows ¹	No	% Female	Pregnant	2 nd calve	
Al-1	63	53.	55.5 NA	35	1 AN 2 A 45	
AI-2	78	48	33.3 M	16	a la la Baser Mark	
AI-3	79	55	43.6	24	2	
Al-4	63	56	46.4	26	0	
Al-5	84	46	45.7	21	0	
Total	367	258	45.3	122	5	

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Number of services (AI) per calved cow and its relationship with body condition score at AI

			No Cows c			
Body Condition Score	No Calved Cows	1st Al	2nd Al	3rd Al	4th Al	Inseminations/ Calved Cow
F+	15	8	4	3	0	1.67
F	74	53	16	5	0	1.35
F-	71	45	15	8	3	1.56
M+	25	11	10	3	1	1.76
м	14	9	3	1	1	1.57
М-	1	0	1	0	0	2.00
Total	200	126	49	20	5	1.52



Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Breeding records of each of the 13 bulls used

Name of Bull/ID	Total do bເ		Calves sired by bull		
	No	%	No	%	
RONNIE IT031000105430	19	3.8	13	5.8	
HOMBER IT021000823434	44	8.9	30	13.3	
COCHISEIT04UD0211493	40	8.1	25	11.1	
REYANDER IT04UD0208061	51	10.3	31	13.7	
FUTUROIT04UD0196885	51	10.3	25	11.1	
CAMELOT IT007GO023C002	20	4.0	9	4.0	
REDBRIDGE IT004UD009B029	41	8.3	18	8.0	
ALEX IT04VR0100261	23	4.6	10	4.4	
HOGAN IT04UD0206505	44	8.9	17	7.5	
SADAM IT093000700839	30	6.1	10	4.4	
STRUPPI IT04BZ0133400	56	11.3	18	8.0	
RODOS IT021000854994	42	8.5	13	5.8	
STRONG IT009GO013B010	34	6.9	7	3.1	
Total	495	100.0	226	100.0	

Index of relative conception efficiency of sires (% of calves sired by bull / % total doses per bull)

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Artificial insemination at Ndokayo ranch (11/05/2008-15/11/2009)

		Cows inseminate	ed
IS Bull	nr.	age (years)	BS (score)
ALEX	4	6.4	6.3
CAMELOT	5	6.4	6.0
COCHISE	10	7.4	6.3
FUTURO	8	6.2	6.1
HOGAN	7	5.9	7.3
HOMBER	7	6.7	6.2
RED BRIDGE	6	8.1	6.8
REYANDER	6	7.7	6.4
RODOS	17	6.4	6.9
RONNIE	10	7.8	6.7
SADDAM	9	6.3	7.1
STRONG	4	7.5	7.3
STRUPPI	11	8.0	7.2
Total/ mean	104	7.0	6.7
SD		2.1	1.3
min		3.4	4.0
max		11.9	9.0

LINKING INSTITUTIONS for veterinary education

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

SIMGOUD crosses calves

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

A group of F1 SIMGOUD of different age and sex

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

A six months young F1 bull behind it a one year old Goudali young bull

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

A one year F1 heifer with his dam by the side

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

A one year old SIMGOUD heifer

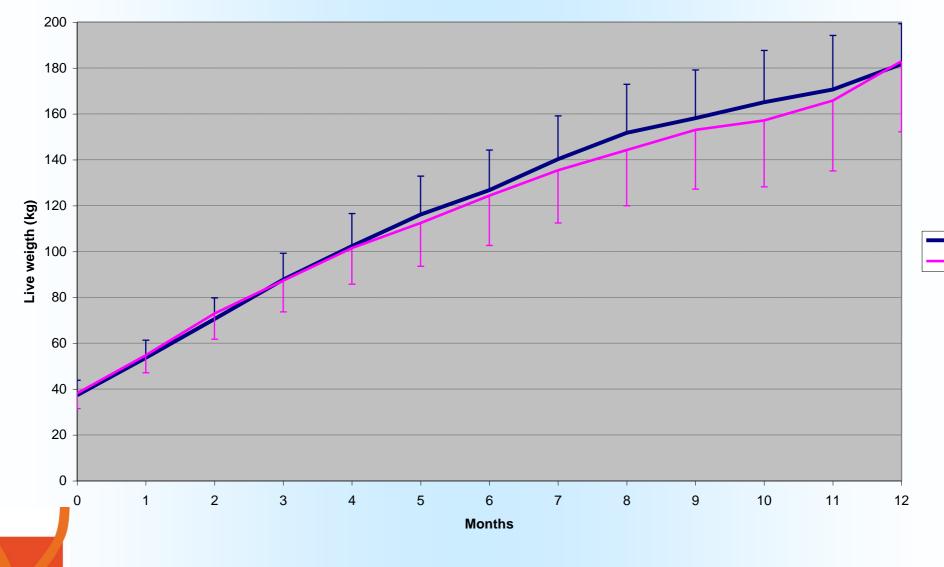
Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Calves growth

Scale for calves weight recording

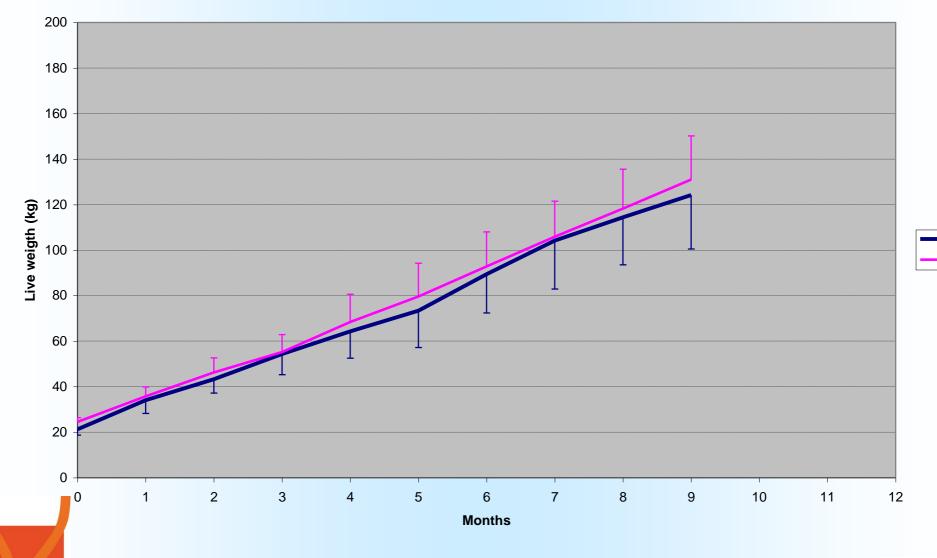
LINKING INSTITUTIONS for veterinary education

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011



Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Growth of SIMGOUD calves


F

М

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Growth of pure Goudali calves

F

Μ

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Perspectives

 \succ By the end of the first phase of crossing about 400 F1 SIMGOUD of both sexes are expected to be calved.

These shall be selected and composed into the second phase breeding groups to obtain the F2 crossings with different levels of Goudali /IS blood:

- 75% IS blood (by inseminating the F1 females with IS semen)
- 50% IS blood (F1 females x F1 males from different parents),
- > 25% IS blood (F1 females x Goudali males and
- Goudali females x F1 males) and
- > 0% IS blood (control pure Goudali group).
- > The new facilities of the ranch will permit a regular weight monitoring of the animals.

> The rate of growth alongside the morphological, reproductive, and health records will allow a comparative evaluation of the performance of the crosses

- to evaluate whether:
 - > the cross is better in performance than local breed
 - that level of performance is acceptable and economically viable

Plenary meeting Universdad Nacional de Guinea Ecuatorial 10th-16thAvril 2011

Breeding strategy

- The intention of the comparison among different classes of cross-breeds and purebreds is to build up a picture of the relative importance of:
 - additive genetic effects and
 - heterosis effects
- This knowledge provides guidance on whether proportion of crossed animals have to be maintained in herd or population
- It is a trade-off between the proportion of crosses in the population and the yield of the crosses
- Stratification is possible when purebred (the indigenous one) and the crosses can occupy different environmental niches. In this case there is a natural place for both breeds: the former may perform adequately for small-holders while the second may be more relevant for larger units supplying a city population

